FP-Growth algorithm

Introduction

» Apriori: uses a generate-and-test approach — generates
candidate itemsets and tests if they are frequent

— Generation of candidate itemsets is expensive(in both
space and time)

— Support counting is expensive
e Subset checking (computationally expensive)
* Multiple Database scans (I/0O)
» FP-Growth: allows frequent itemset discovery without
candidate itemset generation. Two step approach:
— Step 1: Build a compact data structure called the FP-tree
* Built using 2 passes over the data-set.

— Step 2: Extracts frequent itemsets directly from the FP-tree

Step 1: FP-Tree Construction

» FP-Tree is constructed using 2 passes over the
data-set:

Pass 1:
— Scan data and find support for each item.
— Discard infrequent items.

— Sort frequent items in decreasing order based on
their support.

Use this order when building the FP-Tree, so
common prefixes can be shared.

Step 1: FP-Tree Construction

Pass 2:
Nodes correspond to items and have a counter

1. FP-Growth reads 1 transaction at a time and maps it to a
path

2. Fixed order is used, so paths can overlap when
transactions share items (when they have the same prfix).

— In this case, counters are incremented

3. Pointers are maintained between nodes containing the
same item, creating singly linked lists (dotted lines)

— The more paths that overlap, the higher the compression. FP-
tree may fit in memory.

4. Frequent itemsets extracted from the FP-Tree.

Step 1: FP-Tree Construction (Example)

Transaction null e
Data Set null _\ b1
TID| Items ot /L LA
1 {a.b} / q L X e
2 {b.c.d} b1 4 - \
a | {ac.d,e) T) d:1
4 {a.d.e) (i) After reading TID=1 (ii) After reading TID=2
5 {a,b,c}
6 {a,b,c,d} AUl)
> = _ /\L _
8 | {ab.c] a2y . {t’ !
9 {a,b.d} b: 1 ,:-/.3;::______ y Gl
1 g '

0 {b,c.a} - -E::i“":\') "“'4.\

d: Mi-__---'{"jdzl
el

(iii) After reading TID=3

null ()

o
c3(r”
AT
d:1 O 1T e

(iv) After reading TID=10

FP-Tree size

» The FP-Tree usually has a smaller size than the uncompressed data -
typically many transactions share items (and hence prefixes).

— Best case scenario: all transactions contain the same set of items.
e 1 pathinthe FP-tree
— Worst case scenario: every transaction has a unique set of items (no
items in common)
* Size of the FP-tree is at least as large as the original data.

» Storage requirements for the FP-tree are higher - need to store the pointers
between the nodes and the counters.

» The size of the FP-tree depends on how the items are ordered

» Ordering by decreasing support is typically used but it does not
always lead to the smallest tree (it's a heuristic).

Step 2: Frequent Itemset Generation

» FP-Growth extracts frequent itemsets from
the FP-tree.

» Bottom-up algorithm - from the leaves
towards the root

» Divide and conquer: first look for frequent
itemsets ending in e, then de, etc. . . then d,
then cd, etc. ..

» First, extract prefix path sub-trees ending in an
item(set). (hint: use the linked lists)

Prefix path sub-trees (Example)

7 null

_rﬂ-:l-i-'l'-l“ ~|
el r” a1 W

ia) Paths containing node e {b) Paths containing node d
T Complete FP-tree ol il ol

A Vil I

E E_'El |':| .'.

i "_r- 4 - -
/\(" YL T b2 a:
- - e —

b .L','r--h’_)
s |

3

[T

(¢) Paths containing node ¢~ (d) Paths corfainingnode b (&) Paths containing node a

Step 2: Frequent Itemset Generation

processed recursively to extract the bde

frequent itemsets. Solutions are ade

then merged. w::bwr...
{Cce

— E.g. the prefix path sub-tree for e will
be used to extract frequent itemsets
ending in e, then in de, ce, be and ae,
then in cde, bde, cde, etc.

» Each prefix path sub-tree is ¢ Jfﬁﬂdﬁ

he —» abe

e

— Divide and conquer approach

Conditional FP-Tree

» The FP-Tree that would be built if we only
consider transactions containing a particular
itemset (and then removing that itemset from

all transactions).
» | Example: FP-Tree conditional on e.

ltems
—— =

{a,c,d,w) a:2

{a,d, %]

o null

I ———] c:l1(rm=——g—— c:1

AP
|

—t
o
o
-r:I h
¥

E d: d:1

Example

Let minSup = 2 and extract all frequent itemsets
containing e.

» 1. Obtain the prefix path sub-tree for e:

Example

» 2. Check if e is a frequent item by adding the
counts along the linked list (dotted line). If so,
extract it.

— Yes, count =3 so {e} is extracted as a frequent
itemset.

» 3. As e is frequent, find frequent itemsets
ending in e. i.e. de, ce, be and ae.

Example

» 4. Use the the conditional FP-tree for e to find
frequent itemsets ending in de, ce and ae

— Note that be is not considered as b is not in the
conditional FP-tree for e.

* | For each of them (e.g. de), find the prefix
paths from the conditional tree for e, extract

frequent itemsets, generate conditional FP-
tree, etc... (recursive)

Example

e Example: e -> de -> ade ({d,e}, {a,d,e} are
found to be frequent)

C
a2 (7 3 rull -
o - ruldl
_ /_ - --_-‘r’,,f
Cil [= -} ol /\
[_ — 135 | Lt »,
(= e - _ a2
od:1 1:1 d:10r" d:1
Conditional FP-tree for e Prefix paths ending in ce Conditional FP-tree for de

*Example: e -> ce ({c,e} is found to be frequent)

¢ 3 null
a2 null
i1 (m—— ———_ Ci a2
I — 7~ .
(e e e s e) c:1(_r—————— »_) c:1
d:1 d:1

Conditional FP-tree for e Prefix paths ending in ce

Frequent itemsets found (ordered by sufix and

Result

order in which they are found):

Transaction
Data Set

ltams

1,0}

{b,c.d}

| [acde)

| {ad.e)

{a.b,c})

| {a,bcd}

Suffix Frequent Itemsets
e | {e}, {de}l, {ade}, {c.e} {ae}
d {d}. {ed}. {bed}, {acd}, {bd}. {abd}, {ad}
- {c}, {be}, {abe}, {ac)
b | {b}. {a.b}
7 {a}

{a}

{a,b,c}

{a,b,d}

—
—n

WD) QO 4| | L fo | G| o | = | =
= (=

{b,c.e}

Discusion

» Advantages of FP-Growth
— only 2 passes over data-set
— “compresses” data-set
— no candidate generation
— much faster than Apriori

» Disadvantages of FP-Growth

— FP-Tree may not fit in memory!!
— FP-Tree is expensive to build

References

* [1] Pang-Ning Tan, Michael Steinbach, Vipin
Kumar:/ntroduction to Data Mining, Addison-
Wesley

 www.wikipedia.org

