
FP-Growth algorithm

Introduction

 Apriori: uses a generate-and-test approach – generates
candidate itemsets and tests if they are frequent
– Generation of candidate itemsets is expensive(in both

space and time)
– Support counting is expensive

• Subset checking (computationally expensive)
• Multiple Database scans (I/O)

 FP-Growth: allows frequent itemset discovery without
candidate itemset generation. Two step approach:
– Step 1: Build a compact data structure called the FP-tree

• Built using 2 passes over the data-set.

– Step 2: Extracts frequent itemsets directly from the FP-tree

Step 1: FP-Tree Construction

FP-Tree is constructed using 2 passes over the
data-set:

Pass 1:
– Scan data and find support for each item.

– Discard infrequent items.

– Sort frequent items in decreasing order based on
their support.

 Use this order when building the FP-Tree, so
common prefixes can be shared.

Step 1: FP-Tree Construction

Pass 2:
Nodes correspond to items and have a counter
1. FP-Growth reads 1 transaction at a time and maps it to a

path
2. Fixed order is used, so paths can overlap when

transactions share items (when they have the same prfix).
– In this case, counters are incremented

3. Pointers are maintained between nodes containing the
same item, creating singly linked lists (dotted lines)
– The more paths that overlap, the higher the compression. FP-

tree may fit in memory.

4. Frequent itemsets extracted from the FP-Tree.

Step 1: FP-Tree Construction (Example)

FP-Tree size

 The FP-Tree usually has a smaller size than the uncompressed data -
typically many transactions share items (and hence prefixes).
– Best case scenario: all transactions contain the same set of items.

• 1 path in the FP-tree

– Worst case scenario: every transaction has a unique set of items (no
items in common)
• Size of the FP-tree is at least as large as the original data.
• Storage requirements for the FP-tree are higher - need to store the pointers

between the nodes and the counters.

 The size of the FP-tree depends on how the items are ordered
 Ordering by decreasing support is typically used but it does not

always lead to the smallest tree (it's a heuristic).

Step 2: Frequent Itemset Generation

FP-Growth extracts frequent itemsets from
the FP-tree.

Bottom-up algorithm - from the leaves
towards the root

Divide and conquer: first look for frequent
itemsets ending in e, then de, etc. . . then d,
then cd, etc. . .

First, extract prefix path sub-trees ending in an
item(set). (hint: use the linked lists)

Prefix path sub-trees (Example)

Step 2: Frequent Itemset Generation

Each prefix path sub-tree is
processed recursively to extract the
frequent itemsets. Solutions are
then merged.

– E.g. the prefix path sub-tree for e will
be used to extract frequent itemsets
ending in e, then in de, ce, be and ae,
then in cde, bde, cde, etc.

– Divide and conquer approach

Conditional FP-Tree

The FP-Tree that would be built if we only
consider transactions containing a particular
itemset (and then removing that itemset from
all transactions).

I Example: FP-Tree conditional on e.

Example

Let minSup = 2 and extract all frequent itemsets
containing e.

1. Obtain the prefix path sub-tree for e:

Example

2. Check if e is a frequent item by adding the
counts along the linked list (dotted line). If so,
extract it.

– Yes, count =3 so {e} is extracted as a frequent
itemset.

3. As e is frequent, find frequent itemsets
ending in e. i.e. de, ce, be and ae.

Example

4. Use the the conditional FP-tree for e to find
frequent itemsets ending in de, ce and ae

– Note that be is not considered as b is not in the
conditional FP-tree for e.

• I For each of them (e.g. de), find the prefix
paths from the conditional tree for e, extract
frequent itemsets, generate conditional FP-
tree, etc... (recursive)

Example

• Example: e -> de -> ade ({d,e}, {a,d,e} are
found to be frequent)

•Example: e -> ce ({c,e} is found to be frequent)

Result

Frequent itemsets found (ordered by sufix and
order in which they are found):

Discusion

Advantages of FP-Growth

– only 2 passes over data-set

– “compresses” data-set

– no candidate generation

– much faster than Apriori

Disadvantages of FP-Growth

– FP-Tree may not fit in memory!!

– FP-Tree is expensive to build

References

• [1] Pang-Ning Tan, Michael Steinbach, Vipin
Kumar:Introduction to Data Mining, Addison-
Wesley

• www.wikipedia.org

